Engineered Silk Interfaces

نویسندگان

  • Lorenzo Tolentino
  • Vladimir V. Tsukruk
  • Kesong Hu
چکیده

Introduction Past experiments have already proven that silk, a natural protein produced by silkworms and spiders, exhibit intriguing physical properties such as exceptionally high moduli and toughness. Silk fibroins (SF) can be further reconstituted into ultrathin (<100 nm) films while retaining most of these properties for a wide variety of bioapplications. These ultrathin films can be further enhanced by incorporating materials with them to create nanocomposites; in particular, addition of graphene oxide (GO) can increase the ultimate stress the film can take up to about 200%. But not affecting ultimate strain. Hence, the goal of this research was to improve the ultimate strain by adding dopamine (DA) to the SF-GO nanocomposite.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strategies for replicating anatomical cartilaginous tissue gradient in engineered intervertebral disc.

A critical challenge in fabricating a load bearing tissue, such as an intervertebral disc, is to simulate cellular and matrix alignment and anisotropy, as well as a specific biochemical gradient. Towards this goal, multilamellar silk fibroin scaffolds having criss-cross fibrous orientation were developed, where silk fibers in inner layers were crosslinked with bioactive molecule chondroitin sul...

متن کامل

Fabrication of Silk Scaffold Containing Simvastatin-Loaded Silk Fibroin Nanoparticles for Regenerating Bone Defects

Background: In the present study, a tissue engineered silk fibroin (SF) scaffold containing simvastatin-loaded silk fibroin nanoparticles (SFNPs) were used to stimulate the regeneration of the defected bone. Methods: At first, the porous SF scaffold was prepared using freeze-drying. Then simvastatin-loaded SFNPs were made by dissolvation method and embedded in the SF scaffold. Afterwards, the ...

متن کامل

Intrinsic fluorescence changes associated with the conformational state of silk fibroin in biomaterial matrices.

Silk fibroin is emerging as an important biomaterial for tissue engineering applications. The ability to monitor non-invasively the structural conformation of silk matrices prior to and following cell seeding could provide important insights with regards to matrix remodeling and cell-matrix interactions that are critical for the functional development of silk-based engineered tissues. Thus, we ...

متن کامل

Engineered spider silk protein-based composites for drug delivery.

Silk protein-based materials are promising materials for the delivery of drugs and other active ingredients, due to their processability, biocompatibility, and biodegradability. The preparation of films composed of an engineered spider silk protein (eADF4(C16)) in combination with either a polyester (polycaprolactone) or a polyurethane (pellethane), and their physical properties are described. ...

متن کامل

Silk: A Potential Medium for Tissue Engineering

OBJECTIVE Human skin is a complex bilayered organ that serves as a protective barrier against the environment. The loss of integrity of skin by traumatic experiences such as burns and ulcers may result in considerable disability or ultimately death. Therefore, in skin injuries, adequate dermal substitutes are among primary care targets, aimed at replacing the structural and functional propertie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012